UNIVERSITY OF CALIFORNIA, IRVINE

ACADEMIC SENATE

DISTINGUISHED

FACULTY AWARDS

2017 – 2018

MONDAY, NOVEMBER 6, 2017 – 4:30 P.M.

NEWKIRK ALUMNI CENTER
Program
~
Awards Presentation

Maria Pantelia
Academic Senate, Chair

Olivier Civelli
Committee on Scholarly Honors and Awards, Chair

Linda Cohen
Academic Senate, Chair Elect

Award Recipients

Distinguished Faculty Award for Mentorship
Jeanett Castellanos

Distinguished Mid-Career Faculty Award for Service
Nina Bandelj

Daniel G. Aldrich, Jr. Distinguished University Service Award
Hal Moore

Distinguished Assistant Professor Award for Teaching
Hosun Kang

Distinguished Faculty Award for Teaching
William Heidbrink

Distinguished Assistant Professor Award for Research
Mohammad Abdullah Al Faruque

Distinguished Mid-Career Faculty Award for Research
Markus Ribbe

Distinguished Faculty Award for Research
Barbara Finlayson-Pitts
Lecture

Smog, Science and Society: A Journey from the Aurora to Climate Change

Barbara Finlayson-Pitts

Closing Remarks

Enrique Lavernia
Provost and Executive Vice Chancellor

Reception

Committee on Scholarly Honors and Awards 2016-2017

Members

Olivier Civelli, Chair
Imran Currim
Barbara Dosher
Catherine Fisk
Natalia Komarova

Health Sciences
Business
Social Sciences
Law
Physical Sciences

Ex Officio

Michael Dennin
Division of Undergraduate Education
Pramod Khargonekar
Office of Research
Distinguished Faculty Award for Mentorship

Jeanett Castellanos
Lecturer SOE, School of Social Sciences

Growing up in Southeast Los Angeles, my parents stressed the value of education. As a refugee family that came to America for freedom and liberty, the key was to help the next generation transition, acclimate, and succeed. With history of oppression and social injustice in my parents' native land, I am a champion for social justice and equity.

Café con leche (Milk and expresso), guayaba y queso (guava and cheese), arroz con pollo (rice with chicken) were some of the staples in my home. It was not uncommon to have my father dance un guaguancó (a subgenre of Cuban rumba) and my mom and acquired kin gather to create a sense of family. Navigating home and our cultural values of familism, personal connection, and collectivism with school, high academic demands, and a chilly environment was challenging. Mentorship was a key factor to my persistence. In particular, Dr. Joseph White led the way -- showing genuine interest, outlining “a game plan,” and validating me as a woman of color and scholar. Dr. White taught me the importance of giving back, enhancing the educational pipeline, and creating spaces of validation and retention for all students.

I received my graduate degrees in Education with emphasis in Counseling Psychology and Higher Education from Washington State University. After WSU, I was awarded a fellowship at Indiana University Bloomington and later invited as a visiting faculty to the University of Wisconsin-Madison. At Madison with one of my mentors (Dr. Alberta M. Gloria), I learned the application of emic practices in research. Today, my research focuses on examining the psychosociocultural factors contributing to racial ethnic minority (REM) college experiences. A large portion of my work centers on understanding Latina/o persistence patterns and improving their educational trajectories.

Unequivocally, teaching and mentorship are central in student exchanges. I am invested in cultivating a personal connection with my students. Further, I understand the importance student empowerment, assurance, cultural validation and direction. With
close to 20 years at UCI and studying the educational pipeline and cultural competency, the connection between the two facilitate genuine ties with students, an opportunity to support and provide resources, and a platform to write, teach, and contribute to the field.

As a faculty, I believe mentorship promotes student adjustment, integration, satisfaction and academic success. I embody community responsibility and commitment to provide educational opportunities. Doing so has resulted in formal (UROP/SUROP Mentor, CCC Mentor, McNair Mentor, student organizations Advisor/Mentor) and informal (e-mentoring) mentoring relationships. Nationally, the fostering of informal and formalized educational partnerships have facilitated graduate school partnerships and student placements.

My mentorship efforts have received national (AAHHE, APA, NLPA) recognition. Most importantly, my former students have been recognized at local, university, and national levels for their research and leadership (e.g., Mark Kamimura, Kevin Nadal, Derek Iwamoto, Lindsay Huber Perez, Oscar Rojas). With over 150 mentees placed in graduate school and a number of them in academia (e.g., professors, deans, administrators, psychologists), I am honored to serve higher education while creating an academic family that fosters a younger generation of scholars that understand the importance of community, social justice, equity, cultural competency, and emic research.

Effective mentorship occurs through collaboration. I am grateful to be at a university and a School that values mentorship. I am also grateful for exceptional colleagues that facilitate resources and leadership opportunities for students. Working with UROP, the Counseling Center (e.g., COACH, Peers), CFEP, the Cross, the library, and other sister units makes it easy to help students maximize their skills, develop their academic portfolio, and ultimately leave a positive social imprint.

The award represents community, responsibility, service, and the core value of our academic family’s roots - mentorship through connection and validation. Thank you, members of the Academic Senate, mentors, colleagues, and mentees. I am deeply grateful and honored to receive the Distinguished Faculty Award for Mentorship.
I am a child of socialism. Not the Woodstock hippie parents type, alas, the real behind-the-Iron-Curtain deal. I grew up in the former Yugoslavia, in its northernmost republic of Slovenia, but can’t exactly tell a tale of hardline communism. Tito’s market socialism was more progressive than Stalin’s, and I even got to spend summers as a teen with my aunt who lived in Venice (the one in Italy). No one believes me, but the first time I read Karl Marx was in graduate school at Princeton.

Growing up, I thought I would study economics. To be honest, I thought I should study economics. When my father won a National Medal for Engineering Innovation from Marshall Tito he was interviewed for a prominent newspaper and mentioned that he hopes his then 5-year old daughter will become an economist. The copy of the interview was framed on our living room wall so I went to take the entrance exams to the Faculty of Economics in Ljubljana. I survived the challenge, Communism didn’t. Regimes collapsed, countries liberalized, and I got an unexpected chance to pursue a liberal arts education at Augsburg College in Minneapolis. Thanks go to a spirited Polish professor teaching economics there who helped several young women from Eastern Europe, including me, to apply and get a scholarship. Experiencing first-hand how little of what ends up changing our lives is due simply to our own individual merit, was my first personal lesson in sociology.

I was lucky to get a job at UCI in 2003 right after finishing my Ph.D. at Princeton, finding a stimulating and supportive academic environment, together with fabulous weather. Plus, I got a work visa, or else I would have to leave the country. Fourteen years and six books and some dozens of articles and chapters later, on topics as varied as postsocialist capitalism, globalization, money and morals, social inequality, or emotions in the economy, I still take that first sociology lesson to heart. Social structures and interactions shape who we are, and how our communities and societies develop. Social relations and emotions impact action,
and organizational processes can support or constrain us. These are all fascinating issues that feed my nerd-at-heart soul. But I have to admit that, at the end of the day, I do sociological research because I care about people, and about equality and social justice. I realize that this makes it much easier for others to convince me to take up roles that would bring us closer to these goals, such as work on numerous internal and external committees and reviews, and my jobs as Graduate Director in Sociology, Acting Associate Dean in Social Sciences, Chair of the Economic Sociology Section and Council Member-At-Large of the American Sociological Association, Editor of Socio-Economic Review, Executive Council Member of the Society for the Advancement of Socio-Economics, or Equity Advisor in Social Sciences.

The university is a community, above all, and one that depends on everyone’s willingness to contribute to the welfare of others, the definition of “service” I like best. I am honored to play my part, and humbled to be recognized by the Academic Senate for this award. I take any chance I get to acknowledge the good in people around me, nurture the awesome things we can all do together, champion my colleagues, mentor young scholars, and inspire my students to do their own part in building community. I do what I’ve learned from the example of many tremendous (and I don’t use this word lightly) role models from within and outside of UCI. Olga, my mother, modeled what it means to have a big heart. Viviana Zelizer has been so much more than a graduate school mentor. I am deeply grateful for the terrific leadership and a collegial team in Social Sciences and Sociology, for the opportunity to make a difference with the trailblazing Office of Inclusive Excellence and my equity advisor colleagues, and, above all, to my family, especially Marko and Val, who keep it real and fun, and make it all worthwhile.
I have no memories of my father who was 38 years old when he died from, I believe, stresses caused by the Great Depression. I was 3, my sister was 6 and mother was 33. We lived in a very small house on the outskirts of Fort Collins, Colorado. For some time prior to Dad’s death my grandparents also lived with us. Grandpa was suffering from cancer and he died a few weeks before Dad. At the time Dad passed he managed a filling station. Mom was now left with two kids and her mother to support, a situation further complicated by the fact that she was about to lose the house since they were behind in mortgage payments and taxes when Dad died. Then she discovered that my father’s life insurance had lapsed.

In spite of the hardships, I have no memories of being deprived of any necessities or opportunities. For example, when I was 12 years old Mother traded an old coffee pot for an even older metal clarinet. That changed my life.

The clarinet became my passion and obsession. When I reached my senior year in high school, it was playing a central role in my life, so much so that I was awarded the 1st chair positions in the all-state honor band and orchestra. Because of that I received a scholarship to attend Colorado State University to study music. That was pivotal. I probably would have gone on for higher education without the scholarship, but it certainly provided the catalyst.

After my first year, I changed my major from music to chemistry. Why? Among the reasons was the fact that it requires more talent than I had to make a living in music performance. It looked like my best opportunities would be in teaching, a profession I did not want to enter. It’s funny how life works out since I spent my entire professional life as a teacher and loved it.

In July 1959 Cathy and I married. That fall we entered graduate studies at the University of Illinois and then spent two post-doctoral
years at Stanford Research Institute.

One might wonder if all the time devoted to studying the clarinet was wasted since I ultimately chose a different profession. Clearly the answer is NO! It taught me the beauty of dedication, concentration, hard work and learning, to say nothing of the joy of music as an avocation.

I finally took a “real job” in the summer of 1965 when I joined the founding faculty at the University of California, Irvine. I have been here for 52 years during which time I served as faculty member, Chair of the Department of Chemistry, Dean of the School of Physical Sciences, and Emeritus Professor of Chemistry.

The following are some highlights of my UCI experience:

1. During my tenure I received the Lauds and Laurels teaching award in 1982, as well as (a few years later) the teaching award given by the School of Physical Sciences.
2. In my research program, funded mainly by NSF and NIH, I mentored 44 students to the PhD, 10 to the MS, many post-doctoral colleagues and dozens of undergraduates, many of whom went on for graduate studies. Together we published more than 200 papers.
3. During my tenure I served twice as Chair of the Department of Chemistry and 8 years as Dean of the School of Physical Sciences.
4. I served on numerous campus-wide committees including CAP, the Research Committee and the committee on Privilege and Tenure.
5. Spence Olin and I were the first to receive the prestigious Dickson Chair Award for Emeritus Professors. This was awarded for three years and, at the time, carried a 25K annual stipend to be spent as the awardee desired. In my case I redirected the funds (75K) to the Department of Music to be used for undergraduate student scholarships. My favoring the Music Department stems from the close ties I have had with music during my life.
6. In 2009 I received UCI's Outstanding Emeritus Professor Award.
7. After my retirement I served, without salary, as the
Associate Chair of the Chemistry Department (under Don Blake). My main responsibilities during that period were to advise the Chair and evaluate and document all academic merit increases and promotions.

8. In 2015, at the request of Reg Penner, Chair of the Chemistry Department, I wrote (without salary) a 185-page book ("Clarinets, Coffee Pots and Chemistry") illustrating the early history of the Department and campus.

9. My most important contributions and challenges as Dean of the School are the key roles I played in creating the Department of Earth System Science (ESS) as well as my work in improving the Department of Mathematics.

10. Finally, the UCI opportunities, the students, my colleagues and my wonderful family have given me a life of real joy.

Without the passion springing from the trade of an old coffee pot for an even older metal clarinet I would not have taken this amazing journey!
I was born and raised in South Korea. My parents, who never attended college, always told me, “Go to school, learn from the teacher, and be a good person.” While they could not afford other educational activities aside from the public education, they were always very supportive to all the choices that I made and excited about my small successes at schools. I graduated from Seoul National University, a highly prestigious university in South Korea, and became a science teacher at a public school. I thought I could make a difference in many students’ lives if I became a teacher, just like many of my teachers did for me.

My first few years of teaching were a disaster. The majority of my students were from low-income family backgrounds. They suffered from various family-related issues, and some of them were involved in gang activities or violence. I struggled to figure out what to do and how to help my students learn anything in my classroom. In retrospect, my academic career began for this simple reason – I wanted to be a better teacher. Despite the fact that I spent so much time and effort developing knowledge and skills to become a teacher, everything that I knew did not seem to be enough. I began to ask myself many questions: What is the problem? Am I not the right person for this job? What is a good teaching and how do I know it? Who becomes an effective teacher, how and why? After seven and a half years of teaching in South Korea, I decided to pursue my PhD at Michigan State University to further develop my understanding about science teaching and learning. The questions arising from my early experiences guided my dissertation project. I followed six novice teachers for two years and examined how they learned to teach in the context of a university-based teacher preparation program. I developed some useful tools for studying teaching and the processes of learning to teach, as well as some insights into the complexity of teaching.

After completing two years of postdoc at the University of Washington, I was hired by UCI in 2013 as an assistant professor. I am still inquiring about the phenomenon that is called ‘teaching,'
and the processes of learning to teach in various contexts. As a science education researcher and teacher educator, I study what constitutes good science teaching and for whom, when, and why. I teach teachers how to plan, teach, and assess student learning, and study how teachers respond to deliberately designed learning opportunities. My classroom is always a site for inquiries, formative interventions, and experimentation. In my research program, I pay particular attention to unequal science learning opportunities provided to students from historically marginalized communities. I work with science teachers at local communities to expand learning opportunities for students coming from under-privileged backgrounds in the public education system. Luckily, I can directly apply what I learn from my research to the work that I am doing with teachers. I constantly learn through my research and teaching and try to become a good person in the communities that I belong to as my parents taught.

I am deeply honored to receive this award. Throughout my career, I have been extremely fortunate to have received guidance and support from colleagues, mentors, friends, and family. My students have been the best teachers to me and have helped me further my learning about teaching. My colleagues encouraged and supported me to pursue what I deeply care about when I felt lost. Thank you all for your guidance, support, and encouragement.
Distinguished Faculty Award for Teaching

William Heidbrink
Professor, Department of Physics & Astronomy

I went to college because I loved learning. Somewhat randomly, I ended up graduating from UC San Diego as a Physics major so, upon graduation, I worked in a lab for a couple of years to see if I really liked it. The job was (literally) a blast—with plenty of explosions—but I didn’t want to simulate nuclear weapons as a career so I went to Princeton University to specialize in magnetic fusion energy research. The bad news: Nearly 40 years later, we still haven’t made clean, affordable electricity from fusion. The good news: The goal still seems worthwhile and attainable and I’ve had a fascinating career trying to get us there.

When I was offered a faculty position at UCI in 1987, I already had my dream job working on the DIII-D tokamak in San Diego. (This is still the leading magnetic fusion facility in the country.) I hesitated about the switch but my wife told me, “You’ll love teaching!” Happily, she knew me better than I did. The lecture demonstrations were particularly fun to perform. Now I got paid to shoot a liquid nitrogen cannon or swing a bowling ball on a pendulum within millimeters of my nose. Since physics is an empirical science, I included a demonstration in every lecture. (That, at least, was my educational justification for having fun.)

With my friend John Rosendahl, I started performing physics assemblies based on our lecture demonstrations at elementary schools in Irvine and Santa Ana. The kids were so enchanted! Growing up in Newport Beach, I had a charmed childhood with excellent education. The American ideal is to provide equal opportunity for all but the reality often falls short. By bringing the riches of the University of California to children with less opportunities, I felt I was (in a small way) doing what I could to bridge the gap. I’m blessed to be a blessing.

Over the years, the outreach program grew. I started training undergraduates to perform the assemblies. To my delight, the program was as valuable for them as it was for the kids. Tragically, my friend John died but, as a result, our outreach program is now
permanently endowed. Undergraduate teams continue to perform assemblies in Santa Ana and beyond and we have an annual public event that often fills Physical Sciences Lecture Hall. (See https://www.physics.uci.edu/~outreach/ for more information.)

I often tell my students, “Learning is not a spectator sport.” While coaching soccer, I found that effort increased when I converted the soccer drills into competitions so, when I taught a math-methods course, I introduced a “game show” for the students. Near the end of one discussion section, I asked the students whether they wanted to leave 5 minutes early or do another problem that would take 10 more minutes. When the class chose to do another problem, I knew I’d hit educational “pay dirt.”

For more information about me and my motivations, check out my “What matters to me and why” video at http://ocw.uci.edu/lectures/what_matters_to_me_and_why_bill_heidbrink.html
I was born in a small city in Bangladesh. Since my childhood, I always wanted to be an engineer like my father. Although, he is a civil engineer, later in my high school, I got more interested to study computer engineering. During those days in Bangladesh, out of millions of graduating high school students, only the very top 45 students could go to study in Computer Science and Engineering in the nation’s top engineering school (Bangladesh University of Engineering and Technology - BUET).

After finishing my undergraduate degree in 2002, I went to Aachen Technical University Germany (RWTH) for a master degree in Computer Science. I discussed my interest and expertise in compiler design with Professor Rainer Leupers. He immediately invited me to join his research group, and eventually I discovered that I have a special interest in embedded hardware and software design. My master thesis was published in the top conference in the area of design automation (DAC 2004) with a best paper award nomination. It was a big achievement and since then I knew what I want to do in my PhD. After my MS degree, I started working with Professor Joerg Henkel at Karlsruhe University, Germany (the oldest and the most prestigious school for computer science in Germany). My doctoral thesis mostly dealt with on-chip communication architecture design for multi/many-core processors. During the final year of my PhD in 2009, I found that in USA scientists and technologists started talking about the new paradigm of design automation technologies for cyber-physical systems (CPS). I decided to extend my research in that direction after my PhD.

Before joining UCI, I started working in the area of CPS design at Siemens Corporate Research, Princeton, USA. So far, I had a great experience at UCI in the last 5 years. At UCI, I have built a strong program in the area of cyber-physical systems design, where I have pioneered a new concept of “Secured-by-Design” in the last few years. My work has been funded by multiple industries, NSF,
and various DoD organizations. Besides receiving the prestigious Thomas Alva Edison patent award for one of my innovation on electric vehicle charging technology, in the last couple of years, my research work has received numerous best paper awards in the top conferences. After receiving the DATE best paper award in 2016, in one note, one of my colleagues wrote “Prof. Al Faruque is one of the very few individuals worldwide who has received the best paper awards in all the top three CAD conferences (DATE 2016, DAC 2015, and ICCAD 2009).” Considering my contributions in research, I have been awarded with the IEEE CEDA Ernest S. Kuh Early Career Award 2016. This is the highest research award for a young researcher in the area of EDA from IEEE. Every year, only one person receives this award worldwide. I have been very fortunate to have a group of very bright PhD students in the last few years. My first PhD student has graduated in Spring 2017 and this was one of my proudest moments. My interactions with my students are always the best moments of my profession. While teaching, as an engineering professor, I first try to explain why they need to learn this topic and then show them how to solve an engineering problem step by step.

I am very honored to receive this Distinguished Assistant Professor Award for Research. I want to thank the academic senate, my department chair, my mentors, colleagues, and the graduate students of my laboratory for their continued support.
Distinguished Mid-Career Award for Research

Markus Ribbe
Chancellor’s Professor, Department of Molecular Biology
Department of Chemistry

I have spent my career at UCI uncovering the mysteries of the enzyme nitrogenase. My research seeks to understand the basis of the nitrogenase enzymatic activity, with a long-term goal of using nitrogenase to generate alternative sources of fuels. My lab applies a multidisciplinary approach to the investigation of nitrogenase, utilizing techniques in microbiology, biochemistry, structural biology and inorganic chemistry to understand how molecules interact with nitrogenase. Together with my colleagues, including my spouse, Professor Yillin Hu, we have recently discovered that the enzyme can convert exhaust gases carbon dioxide and carbon monoxide into hydrocarbons, which are major components of carbon fuels. I hope that our work will help shape future designs for biofuel production.

I first arrived at UCI as a postdoctoral scholar in the lab of Professor Barbara K. Burgess in the Department of Molecular Biology and Biochemistry. During that time, I began to study the nitrogenase enzyme. After several successful years as a postdoctoral scholar, including publishing work in high impact journals like Science and securing independent funding from the National Institutes of Health, I was hired as an Assistant Professor in the Department of Molecular Biology and Biochemistry. This appointment to the faculty rank at the School of Biological Sciences allowed me to further establish and expand my research program, which resulted in nearly 100 publications, multiple research grants from major federal funding agencies (National Institute of Health, National Science Foundation and Department of Energy) and honors such as being elected as Fellow of the American Academy of Microbiology in 2012 and as Chair of the Iron-Sulfur Enzymes Gordon Research Conference in 2014.

Apart from being enthusiastic about the scientific discoveries made by my lab, I also enjoy serving as a teacher and mentor. I have mentored over a dozen graduate students and postdoctoral scholars, and I am extremely grateful for the hard work these
individuals have put into our research program over the past years. Recently, this passion toward education has led me and my group to create a new pilot outreach program called “Science Saturdays at UC Irvine (UCI).” The program serves to inform students about the educational opportunities that exist for them while exposing them to life as a university student. Geared toward exposing middle school students from lower income areas to university research, the program has welcomed students from the Santa Ana Unified School District, where student population is largely Latino/Hispanic and of low family income.

All in all, I am blessed to be a faculty at UCI and having a job I truly enjoy doing, and I hope to continue to do so for many, many years to come.
Distinguished Faculty Award for Research

Barbara Finlayson-Pitts
Professor, Department of Chemistry

I did my undergraduate degree at Trent University in Peterborough, Ontario, Canada, a small primarily undergraduate institution that was only in its third year of existence when I started. It was based on the Oxford system, with small tutorials and seminars in each class, along with lectures. We were even required to wear academic gowns to class! There was a lot of individual attention and mentoring, and most of my senior year classes were with the Master’s students.

In physical chemistry lab, my undergraduate mentor Professor Ray March, talked about the chemistry of the aurora borealis, a common sight in northern Canada. The field of atmospheric chemistry did not exist at the time, but the idea that there was interesting chemistry going on in air sparked my interest. As a result, I looked for Ph.D. programs that had research related to the atmosphere. As it turns out, these were almost non-existent in Canada, and few and far between in the U.S. In part on the advice of Stanford University Professor Emeritus Phil Leighton, who had written the first book on potential chemistry in air, I decided on UC Riverside which was setting the pace in the new field of the chemistry of air pollution. I arrived at UCR in 1970 and, determined to get out of the horrible smog and the political turmoil as fast as possible, I finished my Ph.D. in 1973 and started to look for academic positions in Canada. At that time there were, at best, a handful of academic positions available in physical chemistry across the entire country. As a result, I decided to stay in the U.S. “for a couple of years” to get some experience until the job situation eased up in Canada. Now 40+ years later…

Having been focused on research 24/7, I was ready devote more time to teaching so joined the faculty at Cal State Fullerton (CSUF) in 1974, where there were also research opportunities. A “couple of years” stretched into 20, when the Department of Chemistry UCI extended an offer, and I moved here in 1994. At CSUF, my research was focused primarily on potential reactions of sea salt in the atmosphere and how these might interact with anthropogenic
pollutants to impact air quality. Infrastructure was somewhat limited at a PUI such as CSUF, and UCI provided the opportunity, support and especially the collaborations to expand the research approaches to tackle this and other problems of interest. As one example, NSF provided center support for an Environmental Molecular Sciences Institute at UCI to bring together experimentalists such as myself, theorists, and atmospheric modelers to understand at a molecular level how the components of sea salt congregate at the surface of sea salt particles and how this affects their kinetics and mechanisms of reaction. This initial group has grown into a campus-wide collaboration involving more than two dozen faculty whose interests in atmospheric processes range from fundamental chemistry to health effects to interactions with biological systems and the development of new energy approaches.

My current research focuses on mechanisms of formation and growth of particles in air, and on the interaction of neonicotinoid pesticides (blamed in part for bee colony collapse) with atmospheric constituents. It is currently funded by the National Science Foundation and the Army Research Office. Support has also been provided in the past by Department of Energy and the California Air Resources Board.

The credit for any successes I have had in research goes to an incredible group of students, postdoctoral fellows and researchers who have worked tirelessly and with enormous dedication and enthusiasm to tease Nature’s secrets out of difficult and complex problems. I have also been truly blessed with a unique, talented…and fun… group of collaborators and talented and dedicated staff at UCI, and scientific colleagues at Pacific Northwest National Lab and a number of international institutions. I am enormously grateful for the opportunities I have been provided at UCI, and humbled by this recognition of the 2017-2018 Distinguished Faculty Award for Research.